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Abstract Many new carotenoid synthesis genes have
recently been identified through genomic sequencing
or functional cloning. Some of them exhibit novel struc-
tures and/or novel functions. This review describes such
examples in the families of lycopene b-cyclases, puta-
tive homologues of phytoene dehydrogenases and new
carotenoid hydroxylases. Both the functionally novel
lycopene b-monocyclases and structurally novel fusion-
type of lycopene b-cyclases were described. Another
newly discovered sequence of lycopene b-cyclase described
might represent a new class of lycopene b-cyclases previ-
ously not identified in several cyanobacteria. Three
examples of putative homologues of phytoene dehydro-
genases were described, however, they were confirmed to
encode different and/or new functions such as b-carotene
ketolase, 4,4¢-diapolycopene oxygenase or prolycopene
isomerase. Two new carotenoid hydroxylase genes were
described that encoded the new function of 2,2¢-b-ionone
ring hydroxylase or 3,3¢-isorenieratene hydroxylase.
Phylogenetic analysis of these genes shed light on their
possible evolutionary origins. These new genes also pro-
vide tools for synthesis of novel and desirable carotenoids
by genetic engineering.
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Introduction

Over 700 carotenoids are widely distributed in nature
including bacteria, fungi, algae, and plants [9]. They
carry out important functions in photosynthesis,
nutrition, and protection against oxidative damage.
Colors of carotenoids range from yellow, orange to
red with variations of brown and purple. Several eye-
catching examples include b-carotene from carrots,
lycopene from tomatoes and lutein from marigold
flowers. Carotenoid biosynthesis starts with the iso-
prenoid pathway (mevalonate-dependent or mevalo-
nate-independent) to generate the C5 isoprene unit,
isopentenyl pyrophosphate (IPP). IPP is condensed
with its isomer dimethylallyl pyrophophate (DMAPP)
to C10 geranyl pyrophosphate (GPP) and elongated
to C15 farnesyl pyrophosphate (FPP). Most common
C40 carotenoids are synthesized from FPP precursor
(Fig. 1) via geranyl geranyl pyrophosphate synthase
(CrtE), phytoene synthase (CrtB), phytoene dehy-
drogenase (CrtI), and lycopene cyclase (CrtY/L).
Further functionalizations of the carotenes such as
hydroxylation, oxidation, glycosylation, aromatiza-
tion, sulfonation give rise to a variety of carotenoids
with different colors and different properties. C30
carotenoids are relatively uncommon but have been
described in Staphylococcus and in methylotrophic
bacteria. The proposed pathways (Fig. 2) involve
synthesis of C30 carotene backbone from FPP fol-
lowed by functionalization of the C30 carotene
backbone.

There also appears to be a great diversity of carot-
enoid synthesis genes. Genomic sequencing of microbes
and plants uncovered many putative carotenoid syn-
thesis genes based on their apparent homology with
known carotenoid synthesis genes. Experimental data
showed that some of these genes encode the predicted
functions with novel characteristics, some even encode
different functions from what predicted based on
homology analysis. Examples of recently discovered
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genes from genomic sequencing or functional cloning
will be given in this review (Table 1) to illustrate the
novelty of gene structures and gene functions.

Diversity of lycopene b-cyclases in microorganisms

Carotenoids are described as acyclic, monocyclic, or
bicyclic depending on whether the ends of the hydro-
carbon backbones have been cyclized [2]. Lycopene
b-cyclases are a class of enzymes responsible for cata-
lyzing the formation of b-cyclic carotenoids from acyclic

lycopene (w,w-carotene). A recent review [24] surveyed
different types of lycopene b-cyclases and postulated
their possible evolutionary relationship. Here we would
like to describe several new lycopene b-cyclases that
have been identified since the review.

Lycopene b-monocyclases CrtYm and CrtLm

The common lycopene b-cyclases consist of the bacterial
CrtY-type [17, 25, 31, 35, 39] and the plant CrtL-type or
Lcy-b type [10, 11, 19, 37]. The CrtY-type and the

Lycopen
e

Phytoene

Farnesyl pyrophosphate
(FPP)

Geranylgeranyl
pyrophosphate (GGPP)

CrtE

CrtB

CrtI

OPP

OPP

CrtG

CrtY/L

β-Carotene

o

o
CrtW/O

CrtZ

O

O
OH

HO

CrtU

HO

OH
Hydrox(P450-type)

O

O
OH

HO
OHHO

Isorenieratene

3,3’-dihydroxyisorenieratene

Canthaxanthin

Astaxanthin

2,2’-dihydroxyastaxanthin

Fig. 1 Pathway for C40
carotenoids biosynthesis. CrtE
geranyl geranyl pyrophosphate
synthase; CrtB phytoene
synthase; CrtI phytoene
dehydrogenase; CrtY/L
lycopene b-cyclase; CrtW/O
4,4¢-b-ionone ring ketolase;
CrtZ 3,3¢-b-ionone ring
hydroxylase; CrtG 2,2¢-
b-ionone ring hydroxylase;
CrtU b-carotene desaturase;
Hydrox cytochrome P450-type
isorenieratene hydroxylase. The
b-carotene portion of the
pathway is commonly present
in many C40 cyclic carotenoids
producing strains. Extension to
2,2¢-dihydroxyastaxanthin is
present in Brevundimonas sp.
SD212. Extension to 3,3¢-
dihydroxyisorenieratene is
present in Brevibacterium linens

CrtM

CrtN

CrtNb

?

A Staphylococcus aureus Methylomonas sp. 16a

OPPOPP

?

CHO

COOH

COOR

CHO
OHC

COOH
HOOC

ROOC
COOR

B

CrtN

CrtNb

Ald

?

Sqs

?

4,4’-Diaponeurosporen-4-oic acid

4,4’-Diaponeurosporen-4-oic acid ester

4,4’-Diaponeurosporen-4-al

4,4’-Diapolycopene-4,4’dial

4,4’-Diapolycopene-4,4’dioic acid

4,4’-Diapolycopene-4,4’dioic acid diester

4,4’-Diapophytoene

4,4’-Diapophytoene

4,4’-Diapolycopene

4,4’-Diaponeurosporene

Squalene

Farnesyl pyrophosphateFarnesyl pyrophosphate

Fig. 2 Proposed pathways for
biosynthesis of C30 carotenoids
in Staphylococcus aureus (a)
and Methylomonas sp. 16a (b).
Sqs squalene synthase; CrtM
4,4¢-diapophytoene synthase;
CrtN 4,4¢-diapophytoene
desaturase; CrtNb 4,4¢-
diapolycopene oxygenase; Ald
aldehyde dehydrogenase

553



CrtL-type of lycopene cyclases share little overall
homology to each other. Despite the sequence diver-
gence, most lycopene b-cyclases are bicyclic, which
cyclize both ends of lycopene to produce bicyclic
b-carotene. Recently, a novel CrtY-type lycopene
b-monocyclase (CrtYm) and a novel CrtL-type lycopene
b-monocyclase (CrtLm) have been identified.

The gene (crtYm) was isolated from a unique marine
bacterium strain P99-3, belonging to the family of
Flavobacteriaceae, that produced myxol [44]. Myxol is
the aglycone of monocyclic myxoxanthophyll likely de-
rived from c-carotene. It was therefore expected that this
bacterium possessed a gene for lycopene b-monocyclase.
The gene (crtYm) was cloned by functional screening of
a cosmid library in the lycopene-accumulating Escheri-
chia coli reporter strain. One of the positive clones was
shown to encode a carotenoid synthesis gene cluster.
Deletion analysis of the gene cluster confirmed that one
of the ORFs (crtYm) encode the lycopene b-monocy-
clase. It should be noted that myxol could not be de-
tected from the E. coli cells containing the positive
cosmid and the lycopene reporter plasmid. Lycopene
and c-carotene were the only pigments that could be
detected. It is possible that other carotenoid synthesis
genes in this cluster were not expressed well in E. coli.
An alignment of the amino acid sequences of CrtYm and

two other lycopene b-cyclases from bacteria and two
from plants showed that CrtYm shared the conserved
domains as the other lycopene bicyclases. Six amino
acid residues were identified that were conserved in all
the aligned lycopene b-cyclases except CrtYm. It was
postulated that at least one of these six amino acid res-
idues might determine the number of b-rings added to
lycopene.

The gene (crtLm) was isolated from Rhodococcus
erythropolis strain AN12 [42], a non-photosynthetic
gram-positive bacterium that belongs to the family of
Nocardiaceae. Strain AN12 producedmonocyclic 4-keto-
c-carotene as the major carotenoid and c-carotene as the
minor carotenoid. The gene (crtLm) encoding the lyco-
pene b-cyclase was identified by genome sequencing and
was located separately from a gene cluster containing the
rest of the carotenoid synthesis genes. The crtLm gene
was confirmed to encode a lycopene b-monocyclase that
produced almost exclusively c-carotene from lycopene.
This monocyclase also showed high activity towards
neurosporene and low activity towards diaponeurospo-
rene. No detectable activity was observed towards
f-carotene. One interesting characteristics of CrtLm was
that its lycopene cyclase activity could be inhibited by
2-(4-chlorophenylthio)-triethylamine (CPTA), an inhib-
itor specific for plant-type lycopene b-cyclases. A CrtLm

Table 1 Novel carotenoid biosynthesis genes described in this review

Gene Protein Source/ reference Homology between
homologsa

Accession number Novelty

crtYm Lycopene-b-cyclase Marine bacterium
strain P99-3 [44]

AB097813 Monocyclase

crtLm Lycopene-b-cyclase Rhodococcus
erythropolis [42]
Deinococcus
radiodurans [42]

31% AY437860
AAF10377
(DR0801)

Monocyclase,
plant-type

crtYcd Lycopene-b-cyclase Halobacterium
salinarum [36]
Sulfolobus solfataricus [18]

29% AE005102
(AAG20275)
AAK43013

Fusion-type

cruA Lycopene-b-cyclase Chlorobium tepidum [28] (CT0456)b New sequence
crtO 4,4¢-b-ionone ring

ketolase
Synechocystis sp. [15]
Anabaena sp. [32]
Rhodococcus erythropolis [41]
Deinococcus radiodurans [41]

64% between the
two from cyanobacteria
38% between the
two from bacteria

(slr0088)b

(alr3744)b

AY705709
AAF10377
(DR0093)

Non-homologous
to CrtW-type of
ketolases

crtNb 4,4¢-diapolycopene
oxygenase

Methylomonas sp. [43]
Staphylococcus aureus [30]

51% AY841893
NP_373088

New sequences
New function

crtH/crtISO Prolycopene
isomerase

Synechocystis sp. [8, 29]
Arabidopsis thaliana [34]
Lycopersicon esculentum [21]

59–60% between the ones
from the cyanobacterium
and the plant; 85%
between the two
from plants

(sll0033)b

NP_172167
AAL91366

New sequences
New function

crtG 2,2¢-b-ionone ring
hydroxylase

Brevundimonas sp. SD212 [33]
Brevundimonas vesicularis
(Q. Cheng, unpublished)

79% AB181388
DQ309446

New sequences
New function

orf10 3,3¢-isorenieratene
hydroxylase

Brevibacterium linens [12, 13] AF139916 Cytochrome
P450-type,
new function

aAmino acid identity between the listed homologs in each category
bGene designation in cyanobase (http://www.kazusa.or.jp/cyanobase/)
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homologue was also identified in the genome of Deino-
coccus radiodurans strain R1 and was shown to exhibit
similar properties as the Rhodococcus CrtLm. Phyloge-
netic analysis showed that the CrtLm from the non-
photosynthetic Rhodococcus or Deinococcus were closely
related to the CrtL from plants and cyanobacteria. It was
postulated that the CrtL-type of lycopene b-cyclases
from non-photosynthetic bacteria might be an evolu-
tionary link between the common bacterial CrtY-type of
lycopene b-cyclases and plant lycopene b- and e-cyclases.

Fusion-type of lycopene b-cyclases CrtYcd

Besides the common CrtY-type and CrtL-type of lyco-
pene b-cyclases, two other types of lycopene b-cyclases
described in the review [24] were the heterodimeric
CrtYc and CrtYd type [23, 47]; and the bifunctional
fungal CrtYB type [4, 5, 45, 46]. The lycopene cyclase
domain of the CrtYB shares homology with the hete-
rodimeric CrtYc and CrtYd. The heterodimeric CrtYc
and CrtYd from gram-positive bacteria encode two
proteins, which have to interact as heterodimers for
lycopene cyclization. Recently, a novel fusion-type of
lycopene b-cyclases has been described in archaeon [18,
36], whose N- and C-terminal halves are homologous to
the CrtYc and CrtYd subunits of the bacterial hetero-
dimeric enzymes. We suggest designating this type of
lycopene b-cyclases as CrtYcd.

The first fusion-type of lycopene b-cyclases was
identified in the halophilic archaeon Halobacterium sa-
linarum as a step towards the study of bacteriorhodopsin
biogenesis [36]. A single gene (crtYcd) was identified in
the genome of a closely related Halobacterium sp. NRC-
1 that shared homology with heterodimeric Yc and Yd
of lycopene b-cyclases in bacteria and the bifunctional
lycopene cyclase-phytoene synthases (CrtYB) in fungi.
An in-frame deletion of crtYcd was created in Halo-
bacterium salinarum, which no longer produced b-caro-
tene or bacteriorhodopsin, whereas lycopene was
accumulated to high levels. Heterologous expression of
crtYcd in lycopene-accumulating E. coli resulted in
b-carotene production. Comparative sequence analysis
and topology predictions provided a model for lycopene
cyclase evolution. The bacterial crtYc and crtYd genes
might have arisen from duplication of a gene encoding a
homodimeric lycopene cyclase. The archaeal CrtYcd
found in H. salinarum contains the fusion of CrtYc and
CrtYd domain linked by an additional transmembrane
segment. The fungal crtYB gene appears to have arisen
from further fusion of an archaeal-like crtYcd gene with
a phytoene synthase (crtB) gene.

Another fusion-type of lycopene b-cyclase gene was
identified in a thermoacidophilic archaeon Sulfolobus
solfataricus [18]. Its function was also verified by
heterologous expression in E. coli. However, Peck’s
view [36] of the archaeal CrtYcd as the evolutionary
intermediate between that of bacteria and fungi was

questioned. Phylogenetic analysis of the CrtYc and
CrtYd domains from bacteria, archea, and fungi
showed the existence of two subgroups. Subgroup A of
CrtYc or CrtYcd contains S. solfataricus, Brevibacte-
rium linens and Mycobacterium sp., and subgroup B
contains those of H. salinarum, Myxococcus xanthus
and fungi. Hemmi [18] argued for an evolutionary
independence between the two subgroups, in which the
fusion-type archaeal CrtYcd are divided. At this time,
we cannot exclude the possibility that the archaeal fu-
sion-type of lycopene b-cyclases is also ancestral to
some bacterial enzymes.

Novel lycopene b-cyclases CruA

Chlorobium tepidum is a photosynthetic green sulfur
bacteria that was shown to produce monocyclic aryl
carotenoids such as chlorobactene and its derivatives
[26, 40]. The genome sequence of Chlorobium tepidum
was completed and no homologues to any of the known
lycopene b-cyclases could be detected in its genome [14].
This suggested the existence of a new type of lycopene
b-cyclase. The gene (cruA) encoding this new type of
lycopene b-cyclase was recently identified in C. tepidum
through functional screening [28]. Expression of cruA in
lycopene-accumulating E. coli produced predominantly
c-carotene, small amount of b-carotene, and some
torulene. Identification of the cruA gene provided a
molecular basis for synthesis of c-carotene derived
monocyclic carotenoids in C. tepidum. The only proteins
similar to CruA in the databases are two groups of
conserved hypothetical proteins found only in cyano-
bacteria and plants. They all contain a putative flavin-
binding domain. Some of those likely encode the same
class of the new type of lycopene b-cyclases, which
would account for the lycopene b-cyclases previously
not identified in several cyanobacteria including Syn-
echocystis sp. PCC6803 and Nostoc sp. PCC7120.

Novel functions for putative phytoene dehydrogenase
homologues

Phytoene dehydrogenases (CrtI) are a diverse group of
enzymes that introduce double bonds to the phytoene
backbone. They could catalyze 2-step, 3-step, 4-step, and
5-step desaturation of phytoene. Several other desatu-
rases, such as the diapophytoene dehydrogenase CrtN
[48], f-carotene desaturase CrtQ [27], and the caroten-
oid 3,4-desaturase CrtD [3, 16], also show homology to
phytoene dehydrogenases. The genetic, biochemical,
and phylogenetic aspects of different types of phytoene
dehydrogenases were previously reviewed [38]. Here, we
would like to describe several examples of phytoene
dehydrogenase homologues identified by sequence anal-
ysis, however, were demonstrated to carry out novel
functions different from the homology prediction.
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The CrtO-type of b-carotene ketolases

The Synechocystis CrtO is the first reported case [15] of a
new type of b-carotene ketolase, which has homology to
bacterial phytoene dehydrogenases but showed no such
activity experimentally. The Rhodococcus CrtO and the
Deinococcus CrtO also showed homology to phytoene
dehydrogenases. Three lines of evidence indicated that
they function as b-carotene ketolases [41]. First,
knockout of the crtO gene in the native Rhodococcus
host blocked the keto group addition. Second, heterol-
ogous expression of the crtO gene in E. coli accumu-
lating b-carotene produced canthaxanthin. Third, the
extract of E. coli cells expressing the crtO gene converted
b-carotene to echinenone and canthaxanthin in vitro.
The Rhodococcus and the Deinococcus CrtO both
showed symmetrical-acting activity to add two keto
groups to b-carotene to produce canthaxanthin, which
was different from the asymmetric activity to produce
echinenone by the Synechocystis CrtO. Search of the
genomic sequence databases identified several more
putative CrtO homologues from Nostoc sp., one of
which was functionally confirmed recently [32]. Six
conserved regions were identified in the CrtO by multi-
ple sequence alignment. No other proteins in the data-
bases contain all six regions. Presence and location of
the six motifs may be a signature for the new CrtO-type
of b-carotene ketolases. On the other hand, the four
conserved regions previously identified in the CrtW-type
of b-carotene ketolases [22] are not present in the CrtO
ketolases. Phylogenetic analysis of the carotenoid keto-
lases and the phytoene dehydrogenases showed that the
CrtO-type and the CrtW-type of ketolases belong to
two different clades of the phylogenetic tree. The CrtO
enzymes (> 500 amino acids) are almost twice the
size as the CrtW enzymes and do not share significant
sequence homology. CrtO and CrtW might have con-
vergently evolved from different ancestors to achieve
similar functions. Interestingly, the CrtO are more clo-
sely related to phytoene dehydrogenases CrtI. Two out
of the six conserved regions in CrtO are also conserved
in CrtI. CrtI and CrtO might have divergently evolved
from the same ancestor to acquire different functions.

Novel carotenoid oxidases (CrtNb) for synthesis of C30
carotenoid aldehydes

Biosynthesis of C30 carotenoids is relatively uncommon
in nature but has been described in Staphylococcus and
in methylotrophic bacteria. The proposed pathways in-
volve synthesis of C30 carotene backbone followed by
functionalization of the C30 backbone. The genes
responsible for synthesis of the C30 carotene backbone
from Staphylococcus [48] were well characterized about a
decade ago: crtM encoding diapophytoene synthase, and
crtN encoding diapophytoene desaturase. The genes for
functionalization of the C30 carotene backbone were
only discovered very recently in 2005 [30, 43].

A gene cluster involved in C30 carotenoid synthesis
was identified in the genome of Methylomonas sp. 16a
[43]. Two of the genes on this cluster, designated as crtN
and crtNb, showed sequence homology (31–34% amino
acid identities) to carotenoid desaturases. They shared
28% amino acid identity to each other. An aldehyde
dehydrogenase gene (ald) was located between crtN and
crtNb in the same gene cluster. Co-expression of this
gene cluster with Staphylococcus crtM in E. coli pro-
duced a pink pigment of 4,4¢-diapocarotenoic-4,4¢-dia-
cid. In vitro transposon mutagenesis was performed on
the gene cluster in order to assign function of each
individual gene. Transposon insertion in the crtN gene
produced only the colorless C30 carotenoid precursor
4,4¢-diapophytoene. This is consistent with the function
of the Methylomonas crtN to encode a diapophytoene
desaturase. Transposon insertion in the ald gene pro-
duced the 4,4¢-diapolycopene-4,4¢-dialdehyde in addi-
tion to the 4,4¢-diapophytoene precursor. This confirmed
the function of the Methylomonas ald to encode an
aldehyde dehydrogenase. Transposon insertion in the
crtNb gene produced the fully unsaturated C30 carot-
enoid backbone 4,4¢-diapolycopene with some addi-
tional less unsaturated intermediates. The fact that only
the C30 carotenoid backbones were produced in this
mutant suggested that functionalization of the
3,4-didehydro-psi end group of 4,4¢-diapolycopene was
blocked in this mutant. The crtNb was not a dia-
pophytoene desaturase gene, instead, it likely encodes an
enzyme that oxidizes the terminal methyl group of the
4,4¢-diapolycopene to produce 4,4¢-diapolycopene-
4,4¢-dialdehyde, which is further oxidized by the alde-
hyde dehydrogenase to produce the C30-carboxy
carotenoid, 4,4¢-diapolycopene-4,4¢-diacid. The Staphy-
lococcus crtNb homologue was also identified, which was
upstream of the crtMN genes with an unknown ORF in
between. The function of CrtNb was further confirmed
by overexpression of crtMN and crtNb in E. coli to
produce 4,4¢-diapolycopene-4,4¢-dialdehyde. The CrtNb
was also tested on 4,4¢-diapophytoene and phytoene
substrates. No desaturated products were observed. This
confirmed that CrtNb is not a carotenoid desaturase,
inspite of its apparent sequence homology.

CrtNb appears to prefer the fully unsaturated linear
end of the C30 carotenoid backbone. CrtNb from
Methylomonas and Staphylococcus both produced
4,4¢-diaponeurosporene-4-monoaldehyde from 4,4¢-di-
aponeurosporene, and produced 4,4¢-diapolycopene-
4,4¢-dialdehyde from 4,4¢-diapolycopene [43]. CrtNb
exhibited low reactivity with the linear end of the C40
carotenoids lycopene and neurosporene. When the fully
unsaturated C40 carotenoid 2,4,2¢,4¢-tetradehydrolyco-
pene was used as the substrate for CrtNb, 2,4,2¢,4¢-tet-
radehydrolycopene dialdehyde and monoaldehyde were
observed [30], although considerable level of lycopene
precursor was still present. The CrtNb (also named as
CrtOx) was evolved in vitro [30] by error-prone PCR
mutagenesis and three mutant enzymes significantly
changed the product profiles without making any new
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product. Higher yields of 2,4,2¢,4¢-tetradehydrolycopene
dialdehyde and lower amount of lycopene precursor
were obtained. In one of the mutants, 2,4,2¢,4¢-tetra-
dehydrolycopene dialdehyde represented 85% of the
total carotenoids.

Prolycopene isomerases CrtH/CRTISO

Prolycopene (7Z,9Z,7¢Z,9¢Z-tetra-cis-lycopene) isome-
rases is another example of a group of enzymes in the
broad phytoene dehydrogenases family, but evolved to
perform a different function. Bacterial phytoene dehy-
drogenases CrtI catalyze 4-step desaturation from
phytoene to all E-lycopene, which can be cyclized to
form b-carotene. Plants and cyanobacteria use 2-step
phytoene desaturases combined with 2-step f-carotene
desaturases, which produce poly-cis prolycopene [6].
Due to its steric configuration, poly-cis prolycopene
cannot be cyclized to ionone end groups. Prolycopene
isomerases were identified in cyanobacteria (CrtH) and
plants (CrtISO) that converted poly-cis prolycopene to
all E-lycopene. Prolycopene isomerases were structurally
related to bacterial phytoene dehydrogenases (CrtI), and
their function as isomerases were confirmed by heterol-
ogous gene expression, knockout in the native host and
in vitro enzymatic studies.

Gene sll0033 (crtH) from Synechocystis sp. PCC6803
was confirmed to encode the prolycopene isomerase.
E. coli expressing plant desaturases could produce pro-
lycopene. Upon co-expression of crtH, formation of
all-E lycopene was mediated [8]. A Synechocystis crtH
mutant produced primarily cis-carotenes and small
amount of all-E carotenes under dark conditions. Under
light conditions photoisomerization could complement
the CrtH-catalyzed enzymatic isomerization [29]. The
plant carotenoid isomerases CrtISO were cloned from
Arabidopsis [34] and tomato [21]. The tangerine toma-
toes that accumulated prolycopene were attributed to
loss of function or impaired function of CrtISO. In vitro
enzymatic assays further confirmed the function of
CrtISO as authentic prolycopene isomearases [7, 20].

New carotenoid hydroxylases

Cyclic and acyclic hydroxy carotenoids are common in
native carotenogenic hosts and have also been synthe-
sized in recombinant hosts. The gene crtC, encoding a
hydratase that introduces water to C-1, 2 of a w-carotene
end group, is responsible for synthesis of acyclic hydroxy
carotenoids. The gene crtZ or crtR, encoding the 3,3¢-
b-ionone ring hydroxylase, is responsible for synthesis of
most cyclic hydroxy carotenoids. CrtZ was recently
found to also hydroxylate the e-ionone ring to catalyze
the direct conversion of a-carotene to lutein (PCT WO
01/66703). Here we would like to describe two new
hydroxylases recently identified that hydroxylate 2,2¢ of

b-ionone rings of cyclic carotenoids or 3,3¢ of aromatic
rings of aryl carotenoids.

Novel 2,2¢-b-ionone ring hydroxylase CrtG

Several bacteria were reported to produce highly polar
carotenoids such as (2R,3S,3¢S)-2-hydroxyastaxanthin
[50] and (2R,3S,2R¢,3¢R)-4-ketonostoxanthin 3¢-sulfate
[49] in addition to astaxanthin. It was expected that they
might possess a novel oxygenase encoding the 2,2¢-b-io-
none ring hydroxylase, in addition to the crtW encoding
the 4,4¢-b-ionone ring ketolase and the crtZ encoding the
3,3¢-b-ionone ring hydroxylase. This structurally and
functionally novel gene crtG encoding the 2,2¢-b-ionone
ring hydroxylase was identified recently in a carotenoid
synthesis gene cluster from Brevundimonas sp. SD212
[33]. This enzyme, CrtG, composed of 257 amino acid
residues showed no overall homology with any other
proteins in the databases. However, it exhibited intrigu-
ingly partial homology with the middle region of animal
sterol-C5-desaturase (D7-sterol 5-desaturase), which
catalyzes the oxidation from lathosterol to 7-dehydro-
cholesterol in the cholesterol biosynthesis pathway.
Expression of crtG in E. coli accumulating zeaxanthin,
canthaxanthin, or astaxanthin produced dihydroxyzea-
xanthin (nostoxanthin), dihydroxycanthaxanthin, or
2-hydroxyastaxanthin, respectively. Interestingly,
expression of crtG in E. coli accumulating b-carotene did
not produce detectable 2-hydroxy carotenoids. There-
fore, CrtG likely requires an oxygenated b-ionone ring,
such as a 3-hydroxy- or 4-keto-b-ionone ring as a sub-
strate for the 2-hydroxylation reaction.

Isorenieratene hydroxylase

Brevibacterium linens, an orange bacterium involved in
cheese ripening, synthesizes carotenoids with aromatic
end groups, isorenieratene, 3-hydroxy isorenieratene,
and 3,3¢-dihydroxyisorenieratene. The genes responsible
for synthesis of isorenieratene were previously well
characterized including the crtU for formation of aro-
matic ring from b-ionone ring [23]. The subsequent
hydroxylation of isorenieratene to hydroxyisoreniera-
tene was hypothesized to be catalyzed by a cytochrome
P450 enzyme encoded by a gene (ORF10) in the cluster.
This has been confirmed recently by data presented by
Dufosse [13] at the 14th international symposium on
carotenoids. A P450 inhibitor tetcyclacis was used to
investigate inhibition of isorenieratene hydroxylation.
More isorenieratene and less hydroxyisorenieratene
were obtained from B. linens grown with increasing
concentrations of tetcyclacis. Hydroxylase mutants of
B. linens that produce predominantly isorenieratene
were obtained by chemical mutagenesis and UV muta-
genesis [12]. Mutations were mapped to the cytochrome
P450 gene ORF10, which most likely encode the iso-
renieratene hydroxylase.
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Conclusion

Understanding of carotenoid biosynthesis has improved
dramatically in the last several years through isolation
and characterization of new carotenoid synthesis genes.
The newly identified genes have further enriched the
structural diversity and functional novelty of carotenoid
synthesis genes, and shed light on their possible evolu-
tionary origins. Functions of some of these new genes
remain to be confirmed by experimental means. Cau-
tions should be exercised to predict gene function based
on homology analysis. One example is the CrtU ho-
mologues identified in several cyanobacteria, which do
not produce aromatic carotenoids. The biological func-
tion of the cyanobacterial CrtU homologues, which
most likely would be different from the CrtU desaturase
in gram-positive bacteria for aromatic carotenoid syn-
thesis, is yet unknown.

Regulation of carotenoid biosynthesis is still largely
uncharacterized. Nevertheless, considerable progress has
been made in engineering the recombinant production
hosts such as E. coli to produce high titers of carotenoids
[1]. The newly identified biosynthetic genes are useful in
producing novel and desirable carotenoids by genetic
engineering of carotenoid synthetic pathways in the
native or recombinant production hosts.
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